Identification of gap junction blockers using automated fluorescence microscopy imaging.
نویسندگان
چکیده
Gap junctions coordinate electrical signals and facilitate metabolic synchronization between cells. In this study, the authors have developed a novel assay for the identification of gap junction blockers using fluorescence microscopy imaging-based high-content screening technology. In the assay, the communication between neighboring cells through gap junctions was measured by following the redistribution of a fluorescent marker. The movement of calcein dye from dye-loaded donor cells to dye-free acceptor cells through gap junctions overexpressed on cell surface membranes was monitored using automated fluorescence microscopy imaging in a high-throughput compatible format. The fluorescence imaging technology consisted of automated focusing, image acquisition, image processing, and data mining. The authors have successfully performed a high-throughput screening of a 486,000- compound program with this assay, and they were able to identify false positives without additional experiments. Selective and pharmacologically interesting compounds were identified for further optimization.
منابع مشابه
High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells.
High-resolution, fluorescence deconvolution (DV) microscopy was implemented to obtain a detailed view of the organization and structural composition of gap junctions assembled from one or two different connexin isotypes in live and fixed cells. To visualize gap junctions, the structural protein components of gap junction channels, the connexin polypeptides alpha1(Cx43), beta1(Cx32), and beta2(C...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملExtended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy
BACKGROUND Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CC...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملAutomated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions
The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomolecular screening
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2003